DATA'AI
SUMMIT

BY & databricks

Video AD
Classification
Across Millions
of Classes

Puneet Jain
Thierry Steenberghs
James Kim

AGENDA

What we will cover today

Ray on Databricks with Spark structured Classification with GenAl across millions
streaming of classes

e Motivation & Challenges eMotivation & Challenges

e Sample Code eProcess of the ML pipeline

eSample Code
*QRA

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

CLASSIFICATION WITH GENAI

Motivation and Challenges

e The amount of ads is increasing
exponentially year over year. (Online
Advertising Revenue went from 8 to
225 Billion from 2000 to 2023)

e Almost doubled from 2020 to 2023
from 140 to 225 billion.

e Needed an automated solution to
solve the increasing number of ads

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved 3

CLASSIFICATION WITH GENAI

Motivation and Challenges

« MediaRadar|Vivvix is a Advertising Intelligence company

o We operate on all Medium:
e TV (Broadcast/Cable & OnDemand)
e Print (Newspapers & Magazines)
e Radio
e Digital (Online & Mobile)
e Podcast
e Outdoors

e Cinema

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

CLASSIFICATION WITH GENAI

Motivation and Challenges

e Our customers want

e Accurate Branding (advertised product/service)
e Accurate Terms (offers)
e Near real time reporting

e Representation of multi-lingual creatives

e Need to minimize human classification/attribution

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

Driving Factors Behind Architecture

Secure Scalable Distributed
0, Q
2
I Em .
[

Managed Workflow

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved

Building Component 1

databricks

Security & Governance Data Processing &
Management

provides robust security and governance
features, including data encryption, access
control, compliance certifications, and
auditing.

provides a unified platform for data
processing and management, including data
ingestion, data cleansing, data
transformation, and data integration.

Scalable Distributed
Scalability & Performance |Collaboration & Integrated ‘c Q ol

r
: . i Secure -
built on top of Apache Spark, a distributed ML Lib/Framework - :
computing engine that can process large provides an interactive workspace with Agile Managed Workflow

datasets in parallel. This enables Databricks
to handle big data workloads and scale up
or down based on demand

notebooks that support multiple languages
such as Python & SQL. integrates well with
popular ML libraries and frameworks such as
TensorFlow, PyTorch, Scikit

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

Building Component 2

Ray is an open-source unified framework for scaling Al and Python applications like machine
learning. It provides the compute layer for parallel processing so that you don't need to be a
distributed systems expert. Ray minimizes the complexity of running your distributed individual and
end-to-end machine leaming workflows

Ease of Use Flexibility
provides a simple and intuitive API for distributed |provides a flexible and extensible architecture,
computing, with support for dynamic task with support for custom schedulers, execution
parallelism, data parallelism, and actor-based engines, and resource managers.
concurrency.

Scalable Distributed
Scalability & Performance Integration Q o
provides efficient and scalable distributed provides seamless integration with popular ML s -
computing, with support for dynamic resource libraries and frameworks, such as TensorFlow, ecure -— : -
allocation, fault tolerance, and distributed memory|PyTorch, and Scikit, making it easier to distribute i
management. provides support for fractional ML tasks and use fractional GPUs. Agile Managed Workfiow
GPUs, enabling developers to share GPUs among
multiple tasks and optimize GPU utilization

hitps:/idocs._databricks com/en/machine-leaming/ray-integration_htmi

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

CLASSIFICATION WITH GENAI

Basic Architecture
T e)

databricks

Collection Systems | Attribution
- . \ /
(Multi-Media) N

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

CODE SAMPLE

Configuration

PYTHON

#0n the compute config make sure you have the following
#spark.task.resource.gpu.amount 0

Install what will make the magic a reality
%pip install ray[default,tune,client]==2.10.0

Let's setup the ray cluster

from ray.util.spark import setup_ray_cluster, shutdown_ray_cluster
ay_conf = setup_ray_cluster(

min_worker_nodes=2, # this permits scaling of the cluster
max_worker_nodes=4, # from min to max nodes

num_cpus_head_node= 3, # all the numbers from here are dependent on
num_gpus_head_node= 1, # the compute setup.

num_cpus_per_node= 4,

Num_gpus_per_node = 1

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

10

CODE SAMPLE

Setting up

Let's setup the work.Sizing up the number of actors will determine how much performance we can get.And
notice how GPUs can be split. An actor can use a fractional GPU, all depends on how much VRAM is consumed by
the process.
@F .pandas_udf(T.StringType())
def parse_creatives(urls: pd.Series) -> pd.Series:

start = time.time()

import ray

import ray.data

@ray.remote
def ray_data_task(ds = None):
ds = ray.data.from_pandas(pd.DataFrame(urls.to_list(),columns = ['combo']))

print("shape:",urls.shape[0])

preds = (

ds.repartition(urls.shape[Q])

.map (
FingerprintAudio,
compute=ray.data.ActorPoolStrategy(min_size=1,max_size=18),
num_cpus=1,)

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 11

CODE SAMPLE

Setting up (Cont'd)

.map (
WhisperTranscription,

compute=ray.data.ActorPoolStrategy(min_size=1,max_size=10),
num_gpus=.5,

.map (
VideoOCR,
compute=ray.data.ActorPoolStrategy(min_size=1,max_size=18),

num_cpus=1,

))
end = time.time()
print("Loaded model dependencies" ,end - start)

final_df = preds.to_pandas()
return final_df['final_dict']

return ray.get(ray_data_task.remote(urls))

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved

12

CLASSIFICATION WITH GENAI

ML PIPELINE PROCESS

DATA DATA + LLM TOP NMATCH

PRIEPROCESSING PREDICTION PREDICTIONS
ol pandas N @) = 0O 5 00

\ 4

LLM PREDICTED SIMILARITY
CLASSES MATCHING

.- (Fuzzywuzzy,
Y, Embeddings, etc)

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved 13

CODE SAMPLE

CREATE ENDPOINT

PYTHON

import mlflow.deployments
#Initialize create a Databricks External Model for enhanced governance as it is compatible with OpenAI SDK.
client = mlflow.deployments.get_deploy_client("databricks")

client.create_endpoint(
name="openai-completions-endpoint",
config={"served_entities": [
"name": "openai-completions-endpoint",
"external_model": {
"name": "gpt-3.5-turbo-0125",
"provider": "openai",
"task": "llm/vl/completions",
"anthropic_config": {
"openapi_key": "{{secrets/my_openapi_scope/openai_api_key}}"}}}]}

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 14

CODE SAMPLE

INITIALIZING OPENAI CLIENT

PYTHON

import os
from openai import OpenAl

api_key = "API_KEY" #your Databricks PAT token

Initialize the OpenAI client

client = OpenAI(
api_key="api_key",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints/openai-completions-endpoint")

INPUT = "RANGEROVER SPORT rangerover sport dynamic air suspension wheel steering configurable terrain response
effortless extreme dynamic air suspension wheel steering configurable terrain response"

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 15

CODE SAMPLE

MAKING THE API CALL

PYTHON

Make the API call

response = client.chat.completions.create(
model="gpt-3.5-turbo-0125",
messages=[{

"role": "system",
"content": "You will be provided with a OCR and audio transcription from a video advertisement. ONLY
output the brand or company AND what is being advertised separated by a comma."},
{"role": "user",

"content": "INPUT: " + INPUT}],
temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0)

print response
print(response.choices[0@].message.content)

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 16

CODE SAMPLE

SAMPLE SIMILARITY MATCH

PYTHON

from fuzzywuzzy import process

def get_top_matches(query, choices, limit=3):
results = process.extract(query, choices, limit=limit)
return results

product_list = ["Range Rover Sport", "Toyota Highlander", "Hyundai Sonata", "Google Pixel 5", "Samsung Galaxy
Buds+", "Apple iPhone 11"]
product_name = "Range Rover"

top_matches = get_top_matches(product_name, product_list)
print("Top 3 similar products:")

for product, score in top_matches:
print(f"{product} with a similarity score of {score}")

DATA'AI SUMMIT ©2024 Databricks Inc. — All rights reserved $ 17

DATA'Al SUMMIT

©2024 Databricks Inc. — All rights reserved

18

	Video AD Classification Across Millions of Classes

	AGENDA
	CLASSIFICATION WITH GENAI
	CLASSIFICATION WITH GENAI
	CLASSIFICATION WITH GENAI
	Driving Factors Behind Architecture
	Building Component 1
	Building Component 2
	CLASSIFICATION WITH GENAI
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	CLASSIFICATION WITH GENAI
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	

Q&A

