
©2024 Databricks Inc. — All rights reserved 1

Video AD 
Classification 
Across Millions 
of Classes

Puneet Jain
Thierry Steenberghs
James Kim



©2024 Databricks Inc. — All rights reserved

• Motivation & Challenges

• Sample Code

Ray on Databricks with Spark structured 
streaming

Classification with GenAI across millions 
of classes

2

•Motivation & Challenges

•Process of the ML pipeline

•Sample Code

•Q&A

AGENDA
What we will cover today



©2024 Databricks Inc. — All rights reserved

• The amount of ads is increasing 
exponentially year over year. (Online 
Advertising Revenue went from 8 to 
225 Billion from 2000 to 2023)

• Almost doubled from 2020 to 2023 
from 140 to 225 billion.

• Needed an automated solution to 
solve the increasing number of ads

3

CLASSIFICATION WITH GENAI
Motivation and Challenges



©2024 Databricks Inc. — All rights reserved

• MediaRadar|Vivvix is a Advertising Intelligence company

• We operate on all Medium: 
• TV (Broadcast/Cable & OnDemand)

• Print (Newspapers & Magazines)

• Radio

• Digital (Online & Mobile)

• Podcast

• Outdoors

• Cinema

4

CLASSIFICATION WITH GENAI
Motivation and Challenges



©2024 Databricks Inc. — All rights reserved

• Our customers want
• Accurate Branding (advertised product/service)

• Accurate Terms (offers)

• Near real time reporting

• Representation of multi-lingual creatives

• Need to minimize human classification/attribution

5

CLASSIFICATION WITH GENAI
Motivation and Challenges



©2024 Databricks Inc. — All rights reserved 6

Driving Factors Behind Architecture



©2024 Databricks Inc. — All rights reserved 7

Building Component 1



©2024 Databricks Inc. — All rights reserved 8

Building Component 2



©2024 Databricks Inc. — All rights reserved 9

CLASSIFICATION WITH GENAI
Basic Architecture



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

Configuration

#On the compute config make sure you have the following
#spark.task.resource.gpu.amount 0

# Install what will make the magic a reality
%pip install ray[default,tune,client]==2.10.0

# Let’s setup the ray cluster
from ray.util.spark import setup_ray_cluster, shutdown_ray_cluster
ay_conf = setup_ray_cluster(
min_worker_nodes=2, # this permits scaling of the cluster
max_worker_nodes=4, # from min to max nodes
num_cpus_head_node= 3, # all the numbers from here are dependent on
num_gpus_head_node= 1, # the compute setup.
num_cpus_per_node= 4,
Num_gpus_per_node = 1

)

CODE SAMPLE

1010



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

# Let’s setup the work.Sizing up the number of actors will determine how much performance we can get.And 
notice how GPUs can be split. An actor can use a fractional GPU, all depends on how much VRAM is consumed by 
the process.
@F.pandas_udf(T.StringType())
def parse_creatives(urls: pd.Series) -> pd.Series:

start = time.time()
import ray
import ray.data

@ray.remote
def ray_data_task(ds = None):

ds = ray.data.from_pandas(pd.DataFrame(urls.to_list(),columns = ['combo']))

print("shape:",urls.shape[0])
preds = (
ds.repartition(urls.shape[0])
.map(

FingerprintAudio,
compute=ray.data.ActorPoolStrategy(min_size=1,max_size=18),
num_cpus=1,)

11

CODE SAMPLE
Setting up

11



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

.map(
WhisperTranscription,
compute=ray.data.ActorPoolStrategy(min_size=1,max_size=10),
num_gpus=.5,

)
.map(

VideoOCR,
compute=ray.data.ActorPoolStrategy(min_size=1,max_size=18),
num_cpus=1,

))
end = time.time()
print("Loaded model dependencies" ,end - start) 

final_df = preds.to_pandas()

return final_df['final_dict'] 

return ray.get(ray_data_task.remote(urls))

12

CODE SAMPLE
Setting up (Cont’d)

12



©2024 Databricks Inc. — All rights reserved 13

CLASSIFICATION WITH GENAI

DATA 
PREPROCESSING

LLM PREDICTED 
CLASSES

DATA + LLM 
PREDICTION

SIMILARITY 
MATCHING
(Fuzzywuzzy, 
Embeddings, etc)

TOP N MATCH 
PREDICTIONS

ML PIPELINE PROCESS



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

CREATE ENDPOINT

import mlflow.deployments
#Initialize create a Databricks External Model for enhanced governance as it is compatible with OpenAI SDK.
client = mlflow.deployments.get_deploy_client("databricks")

client.create_endpoint(
name="openai-completions-endpoint",
config={"served_entities": [

{"name": "openai-completions-endpoint",
"external_model": {

"name": "gpt-3.5-turbo-0125",
"provider": "openai",
"task": "llm/v1/completions",
"anthropic_config": {

"openapi_key": "{{secrets/my_openapi_scope/openai_api_key}}"}}}]}

CODE SAMPLE

1414



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

INITIALIZING OPENAI CLIENT 

import os
from openai import OpenAI

api_key = "API_KEY" #your Databricks PAT token

# Initialize the OpenAI client
client = OpenAI(

api_key="api_key",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints/openai-completions-endpoint")

INPUT = "RANGEROVER SPORT rangerover sport dynamic air suspension wheel steering configurable terrain response 
effortless extreme dynamic air suspension wheel steering configurable terrain response"

CODE SAMPLE

1515



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

MAKING THE API CALL

# Make the API call
response = client.chat.completions.create(

model="gpt-3.5-turbo-0125",
messages=[{

"role": "system",
"content": "You will be provided with a OCR and audio transcription from a video advertisement. ONLY 

output the brand or company AND what is being advertised separated by a comma."},
{"role": "user",
"content": "INPUT: " + INPUT}],

temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0)

# print response
print(response.choices[0].message.content)

CODE SAMPLE

1616



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

SAMPLE SIMILARITY MATCH

from fuzzywuzzy import process

def get_top_matches(query, choices, limit=3):
results = process.extract(query, choices, limit=limit)
return results

product_list = ["Range Rover Sport", "Toyota Highlander", "Hyundai Sonata", "Google Pixel 5", "Samsung Galaxy 
Buds+", "Apple iPhone 11"]
product_name = "Range Rover"

top_matches = get_top_matches(product_name, product_list)

print("Top 3 similar products:")
for product, score in top_matches:

print(f"{product} with a similarity score of {score}")

CODE SAMPLE

1717



©2024 Databricks Inc. — All rights reserved 18

Q&A


	Video AD Classification Across Millions of Classes
	AGENDA
	CLASSIFICATION WITH GENAI
	CLASSIFICATION WITH GENAI
	CLASSIFICATION WITH GENAI
	Driving Factors Behind Architecture
	Building Component 1
	Building Component 2
	CLASSIFICATION WITH GENAI
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	CLASSIFICATION WITH GENAI
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	CODE SAMPLE
	Q&A

